Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Ju Lin, Yi-Zhi Li, Hai-Jun Xu, Sheng-Gui Liu, Li Xu, Zhen Shen and Xiao-Zeng You*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.062 wR factor = 0.146 Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-(2-Pyridyl)benzo[1,2-d;4,5-d']diimidazole

In the title compound, $C_{13}H_9N_5$, the dihedral angle between the pyridyl and benzodiimidazole rings is 17.76 (7)°. The molecules form a two-dimensional layer structure *via* N– H···N and C–H···N intermolecular hydrogen bonds. The layers lie parallel to the *ab* plane and are stacked along the *c* axis. Received 27 November 2003 Accepted 5 December 2003 Online 12 December 2003

Comment

Benzimidazole and its derivatives, as potential complexing agents, have been extensively investigated in recent years (Addison *et al.*, 1987; Sanni *et al.*, 1988; Boca *et al.*, 1998) and were found to have a broad scope for spin crossover and biological activity. Benzodiimidazole and its derivatives are potential antitumor agents as inhibitors (William & Edward, 2000) and some of their ruthenium complexes have the property of metal-to-ligand charge-transfer excited states (Ohno *et al.*, 1992). In this paper, we report the synthesis and crystal structure of the title compound, (I).

Fig. 1 shows the molecular structure of (I) along with the labeling scheme. The dihedral angle between the pyridyl and benzodiimidazole rings is $17.76 (7)^{\circ}$. The molecules form dimeric unit *via* N2-H2A···N3ⁱ and C8ⁱ-H8ⁱ···N1 [symmetry code: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, z] hydrogen bonds, and the units are further linked by an N4-H4A···N5ⁱⁱ [symmetry code: (ii) $\frac{3}{2} - x$, $y - \frac{1}{2}$, z] hydrogen bond to form a two-dimensional layer structure (Fig. 2). The layers lie parallel to the *ab* plane and are stacked along the *c* axis.

Figure 1 The molecular structure of (I), showing 30% probability displacement

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved ellipsoids with the atom-numbering scheme. Dashed lines represent hydrogen bonds. [Symmetry codes: $(A) \frac{1}{2} - x, \frac{1}{2} + y, z; (B) \frac{3}{2} - x, \frac{1}{2} + y, z.$]

Acta Cryst. (2004). E60, 077–078

Figure 2

A packing diagram of (I). Dashed lines represent hydrogen bonds.

Experimental

The title compound, (I), was synthesized as follows: a mixture of o-phenylenediamine and a slight excess of formic acid was heated at the boiling temperature for 30 min to give the product, benzimidazole (Pool et al., 1937). Nitration of benzimidazole gave initially 5-nitrobenzimidazole. Further nitration of this compound gave 5,6-dinitrobenzimidazole, which was reduced with tin and concentrated hydrochloric acid (Ficken & Fry, 1963). The product, 5,6-diaminobenzimidazole, was added to pyridine-2-carboxylic acid in hot polyphosphoric acid and stirred at 463 K for 3 h (Addison et al., 1983). The molten product was poured into vigorously stirred cold water. When cool, the white precipitate was collected by filtration, then slurried in hot 10% aqueous sodium carbonate solution. The resulting solid was filtered off and recrystallized from ethanol-water (1/1) to obtain (I) as long colorless prisms (yield ca 60%). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Crystal data

$C_{13}H_9N_5$ $M_r = 235.25$ Orthorhombic, <i>Pbca</i> a = 10.3841 (13) Å b = 10.0409 (13) Å c = 21.911 (3) Å $V = 2284.5 (5) \text{ Å}^3$ Z = 8 $D_x = 1.368 \text{ Mg m}^{-3}$	Mo $K\alpha$ radiation Cell parameters from 2252 reflections $\theta = 2.7-25.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) K Needle, colorless $0.30 \times 0.12 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000) $T_{\min} = 0.98, T_{\max} = 0.99$ 12680 measured reflections	2701 independent reflection 1770 reflections with $I > 2c$ $R_{int} = 0.099$ $\theta_{max} = 28.0^{\circ}$ $h = -13 \rightarrow 11$ $k = -10 \rightarrow 13$ $l = -28 \rightarrow 26$
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.146$ S = 1.032701 reflections 163 parameters

mm

2701 independent reflections
1770 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.099$
$\theta_{\rm max} = 28.0^{\circ}$
$h = -13 \rightarrow 11$
$k = -10 \rightarrow 13$
$l = -28 \rightarrow 26$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.07P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1		
Selected	geometric	nar

1

Selected	geometric	parameters	(A, ').

C1-N1	1.337 (3)	C9-N4	1.386 (2)
C5-N1	1.340 (3)	C10-N5	1.316 (2)
C6-N3	1.322 (2)	C10-N4	1.343 (2)
C6-N2	1.354 (2)	C11-N5	1.398 (2)
C7-N3	1.395 (2)	C13-N2	1.381 (2)
C1-N1-C5	116.43 (19)	C10-N4-C9	106.51 (16)
C6-N2-C13	107.12 (15)	C10-N5-C11	103.82 (16)
C6-N3-C7	104.57 (15)		

Table 2 Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} N2 - H2A \cdots N3^{i} \\ N4 - H4A \cdots N5^{ii} \\ C8 - H8 \cdots N1^{iii} \end{array}$	0.86 0.86 0.93	2.06 2.06 2.50	2.877 (2) 2.896 (2) 3.317 (3)	159 163 146

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, z; (ii) $\frac{3}{2} - x$, $y - \frac{1}{2}$, z; (iii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, z.

All H atoms bonded to C atoms were placed in calculated positions, with C-H distances of 0.93 Å, and included in the refinement in the riding-model approximation, with the exception of the hydroxy group H atom, which was refined, with $U_{iso} = 1.2U_{eq}$ of the carrier atom. H atoms bonded to N atoms were found in difference density maps and were refined isotropically as riding, with N-H bond lengths of 0.86 Å.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was funded by the National Natural Science Foundation of China.

References

- Addison, A. W., Burman, S., Wahlgren, C. G., Rajan, O. A., Rowe, T. M. & Sinn, E. (1987). J. Chem. Soc. Dalton Trans. pp. 2621-2630.
- Addison, A. W., Rao, T. N. & Wahlgren, C. G. (1983). J. Heterocycl. Chem. 20, 1481-1484.
- Boca, R., Boca, M., Ehrenberg, H., Fuess, H., Linert, W., Renz, F. & Svoboda, I. (1998). J. Chem. Soc. Faraday Trans. 94, 1189-1195.

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Ficken, G. E. & Fry, D. J. (1963). J. Chem. Soc. pp. 736-738.
- Ohno, T., Nozaki, K. & Haga, M. (1992). Inorg. Chem. 31, 4256-4261.
- Pool, W. O., Harwood, H. J. & Ralston, A. W. (1937). J. Am. Chem. Soc. 59, 178 - 179
- Sanni, S. B., Behm, H. J., Kenrskens, P. T., van Albada, G. A., Reedijk, J., Lenstra, A. T. H., Addison, A. W. & Palaniandavar, M. (1988). J. Chem. Soc. Dalton Trans. pp. 1429-1435.
- William, G. S. & Edward, B. S. (2000). J. Med. Chem. 43, 629-638.